
1

Maintaining Consistency across Engineering
Artifacts

Alexander Egyed, Peter Hehenberger, Andreas Demuth, and Klaus Zeman

F

Abstract—Software and systems engineering combines artifacts from
diverse engineering domains and tools. This article explores how incre-
mental consistency checking is able to automatically and continuously
detect inconsistencies among these engineering artifacts – even if those
artifacts reside in different engineering tools and hence are handled
by different engineers. We argue that engineers should be aware of
inconsistencies, even if they are willing to tolerate them.

1 INTRODUCTION

Engineering is a collaborative effort that involves many
stakeholders. Yet its day-to-day operations cater to the needs
of individuals. Complex and multi-disciplinary problems
are broken down to tasks that individual engineers are able
to solve with the tools and methods available to them. Yet,
this tool landscape is diverse and is getting increasingly
more so. It is not uncommon that companies use dozens
if not hundreds of tools - for example, software engineers
use tools for requirements capture, specification, design/ar-
chitecture, programming, or testing; tools that are often
fundamentally different from those used by mechanical,
electrical, aeronautical or systems engineers.

Not only do tools differ but so does the knowledge that
engineers capture and maintain within these tools. We speak
of artifacts. Examples of such artifacts are requirements,
methods, hardware components, computations, use cases,
electrical switches, and many more. Yet, while artifacts in
tools are syntactically and semantically diverse, they are not
independent. Together, these artifacts describe the engineer-
ing problem, process, and solution.

This paper describes how to detect inconsistencies across
diverse artifacts. Inconsistencies are not limited to artifacts
within single engineering tools (intra-tool consistency [1])
but may also happen across engineering tools (inter-tool
consistency) where artifacts of two seemingly independent
tools contradict. One might argue that inter-tool inconsis-
tencies are more problematic than intra-tool consistencies
because of diverse tool semantics and the concurrent modi-
fication of artifacts by different engineers. Nonetheless, de-
tecting all inconsistencies is critical for success—not only in
software engineering but across all engineering disciplines.
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Failure to detect such inconsistencies is known to lead to
project failures, cost and schedule overruns, and suboptimal
designs [2]. We argue that today it is not enough to discover
inconsistencies eventually but engineers should be informed
about them as early as possible—ideally shortly after they
have been introduced. This is desired even if engineers are
willing to tolerate inconsistencies for some time [3].

The remainder of the paper is organized as follows. In
Section 2, we illustrate some typical examples of inconsis-
tencies that arise in practice. Section 3 discusses how our
approach to consistency checking works. It also provides an
intra-tool consistency tool example. Section 4 then extends
this to detecting inconsistencies across different tools. Appli-
cability, scalability, and use cases are discussed in Section 5.

2 INCONSISTENCIES ILLUSTRATED

Inconsistencies come in many shapes and sizes. To better
illustrate them, let us discuss a few examples. We chose a
mechatronical domain, in which a robot is to be developed.
Figure 1 shows a 3D CAD drawing of the robot with its
most significant hardware components and the UML use
case diagram describes its basic uses. Even though the CAD
drawing and the use case diagram follow a simple structure
and notation (to be understandable across engineering disci-
plines), these diagrams can reach high levels of complexity.
Consequently, many kinds of errors may exist within and
among them. Take for example the requirement that every
use case (ellipsoid) ought to be connected to an actor (stick
man)—directly or indirectly via other use cases. Such a
requirement would make sure that every use case can be
triggered by an actor. Indeed, the use case diagram does
violate this requirement because the use case “Move Object”
is not used by any actor (i.e., there is no connection between
the actor “Controller” and the use case “Move Object”,
not even via other use cases). Though this requirement is
straightforward to explain, it is hard to enforce if actors
and use cases are numerous and scattered across different
diagrams.

Inconsistencies become significantly harder to detect if
they span across artifacts of different tools. For example,
consider the requirement that hardware/software compo-
nents ought to be mapped to use cases that require them
(a common requirement in safety critical domains [4]). If
we consider the hardware components from Figure 1 then
this requirement would make sure that every component
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Fig. 1: Different Kinds of Engineering Artifacts of a Robot
System: (a) CAD Drawing (b) Use Cases and Actor. How
does one detect Inconsistencies among them if Engineers
capture these Artifacts in different Tools?

identified there (e.g., Gripper and Arm) is used by at least
one use case.

Conceptually, the ”every use case must be trigged by
an actor” requirement is similar to the ”every component
must be used by a use case” requirement. However, with the
first requirement, all artifacts involved can be found within
a single tool (the use case diagram). This is not the case
with the second requirement. While the “Move Arm” use
case likely relates to the Arm component in the drawing, it
is much less obvious that the “Grab Object” relates to the
Gripper. For detecting the second kind of inconsistencies,
relations among use cases and CAD components need to
be defined explicitly – for example, in form of traceability
links [5] as seen in Figure 2. Without such explicit links
[6], it is significantly harder if not impossible to detect
inconsistencies among artifacts of different tools. Yet, these

Fig. 2: Explicit Links between Use Cases and CAD Compo-
nents are required for detecting Inconsistencies. How does
one capture those Links if the Artifacts reside in different
Tools?

inconsistencies are just as important—or perhaps even more
so.

3 THE MODEL/ANALYZER APPROACH

The Model/Analyzer approach is an incremental consis-
tency checker [7] that focuses on changes (deltas) and pro-
vides engineers with immediate inconsistency feedback on
the direct consequences of their actions. The engineers can
then fix these inconsistencies or they can choose to ignore
them [3], but do so intentionally instead of accidentally.

3.1 Intra-Consistency Example: UML Tool
Figure 3 depicts an intra-tool integration of the Model/-
Analyzer approach with the IBM RSA modeling tool for
the Unified Modeling Language (UML). We see a class
diagram (top left), a sequence diagram (top middle), and
the previously discussed use case diagram (top right). The
inconsistency feedback is visualized at the bottom. All di-
agrams conform to the UML specification. However, they
do violate other semantics that engineers typically want
to enforce when using UML even if the UML tool does
not. Besides the use case inconsistency discussed above,
the example depicts another inconsistency with regard to
message 5:close in the sequence diagram. This message
is sent from the robot controller to its gripper (see sender
and receiver lifelines). However, the Gripper class does
not actually define an operation called “close” in the class
diagram. Hence, there is no operation corresponding to the
message. The inconsistencies are visualized in red for easier
identification.

3.2 Consistency Rule Language
Like other consistency checkers, the Model/Analyzer ap-
proach requires defined consistency rules. Such a rule em-
bodies a condition (as a boolean expression among artifacts)
with a context (a specific kind of artifact the condition
applies to). We use the standard OCL language [8] for letting
engineers define such rules. For example, the inconsistency
where message 5:close does not have a corresponding
operation is based on the consistency rule CR1 in Figure 4.
This rule simply defines that for any given message there
must be a corresponding operation in the message receiver’s
class. In UML, a message receiver is a life line and its
represented type is a class with operations. The rule states
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Fig. 3: Intra-Tool Consistency Checking detects Inconsistencies among Artifacts within the same Tool (here UML Class,
Sequence, and Use Case Diagrams). The Inconsistencies are flagged (in red) on the bottom left and the Artifacts involved
are highlighted in the Diagrams.

that there must exist an operation whose name is equal
to the name of the message. The context of this rule is an
UML::Message which implies that this rule is applied to
any instance thereof. One of these instances – the message
5:close violates this rule – the other instances do not. Do
note that identifiers such as ”receiveEvent” or ”type” are
defined in the UML modeling language – the standardized
UML meta model.

The inconsistency where the use case Move Object
does not have a connected actor is based on another
rule. Rule CR2 in Figure 4 defines that for a given
UML::UseCase there must exist an association whose end
type is an Actor.

3.3 Incremental Validation and Scopes
A key scalability aspect of the Model/Analyzer is that a
given consistency rule is validated separately for every
instance of a rule’s context. In our example in Figure 3, the
rule CR1 is validated four separate times – once for every
message as depicted on the bottom left (notice the four flags
underneath the consistency rule) Likewise, the rule CR2 is
validated six separate times – once for every use case (the
flags of four of those evaluations are depicted in the figure).
We refer to a single validation of a consistency rule on a
specific artifact as a consistency rule instance (CRI). A CRI
is uniquely identified by the consistency rule it validates
and the specific artifact (context element) it applies to. For ex-
ample, the CRI <CR1,close[UML::Message]> validates

whether the message close in Figure 3 has a corresponding
operation defined in the receiver class Gripper. This is one
of the four evaluations visible in the figure and the only
one flagged inconsistent (red flag) because of its inconsistent
state. Note that we use a simplified notation in this article
to identify artifacts by their name followed by their type
in brackets for readability reasons. In reality, artifacts are
identified by unique ids.

CRIs do provide two major benefits. First, rules are
written from the viewpoint of individual artifacts (e.g.,
for a specific UML::Message). Second, CRIs provide fine-
grained feedback about the consistency of specific artifacts.
Each CRI is validated separately and the consistency of each
CRI is determined on an individual basis. Therefore, the
impact of a change onto consistency is often very cheap to
compute and engineers will be informed about the impact
of the changes they are currently working on only.

Traditional approaches require all design rules to be
validated every time a change occurs because they do
not understand the impact of a change onto consistency
rules. In the Model/Analyzer, each CRI automatically main-
tains its own change impact scope which is computed
during a CRI’s validation. A typical validation consists
of navigating through artifacts and computing a boolean
result. For example, during the validation of the CRI
<CR1,close[UML::Message]>, the name attribute of the
object close[UML::Message] is read, the path to the
message receiver’s class is walked through, the names of
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Fig. 4: Two Consistency Rules written in OCL. For example, CR2 ensures that each use case is connected to an actor who
needs it.

this class’ operations are collected, and finally the collection
is searched for operations with a matching message name –
an equality computation which returns ”false” because no
operation exists that matches the name “close”. The CRI’s
scope is simply the union of all artifacts visited during this
validation. This scope is observable automatically and all
that is needed to enable correct and complete incremen-
tal consistency checking. The basic observation is that a
CRI’s consistency state can only be affected if an artifact
in the CRI’s scope changes. Hence only those CRIs whose
scopes contain a changed artifact need to be re-validated.
In essence, Figure 3 depicts the scope elements of all incon-
sistent CRIs (e.g., <CR1,close[UML::Message]>) in red
which is not only a pre-requisite for scalability but also a
useful visualization.

4 CONSISTENCY CHECKING ACROSS TOOLS

There is no technical reason why every engineering tool
could not offer its own built-in consistency checking mecha-
nism (analogous to Figure 3). However, doing so would not
provide a comprehensive solution because any given tool
typically contains a subset of artifacts only and hence cannot
support comprehensive consistency checking. For example,
a programming tool does not contain design modeling
artifacts or requirements and, consequently, a programming
tool could not detect inconsistencies with those design ar-
tifacts or requirements. A cross-tool consistency checking
mechanism provides a single, uniform solution for all tools
and it would be usable and understandable by all engineers
because it would be based on a common consistency rule
language and an uniform user interface. This is especially
important in situations where consistency rules span across
engineering tools and engineers need to work together to
write and to interpret them.

To enable inter-tool consistency checking, two problems
need to be solved for the Model/Analyzer approach to func-
tion: 1) the artifacts need to be transformed to a common
representation and 2) the artifacts need to be linked to allow
consistency rules to navigate them (i.e., to identify the CAD
components that are meant to implement the use cases). We
have explored two possible strategies which are discussed
next:

4.1 Unifying Tool

A simple strategy is to use an unifying tool that repre-
sents artifacts from various tools. Transformation methods
are then used to translate the various tool artifacts to the

Fig. 5: Inter-Tool Consistency Checking is possible through
the use of an Unifying Tool (e.g., an UML Tool at the top)
or an Engineering Cloud (e.g., DesignSpace at the bottom)
which provide uniform, tool-independent representations
for Artifacts.

representation of the unifying tool (Figure 5 top). Within
the unifying tool it is possible to add links among these
artifacts, if needed. Once artifacts are represented and linked
in unifying tools then inter-tool consistency checking is very
similar to intra-tool consistency checking since all artifacts
reside within that same tool.

We commonly (mis)use UML tools for this purpose, tak-
ing advantage of the UML extensibility mechanism through
stereotyping. Figure 6 (a) again depicts the IBM RSA mod-
eling tool but now it also represents the main CAD compo-
nents and the links between these components and the use
cases. To realize this, we merely need to transform the CAD
drawing from Figure 1 to UML (this transformation is dis-
cussed later). While UML does not have built-in constructs
for arbitrary mechatronical artifacts, existing UML artifacts
can be (mis)used to represent them. In our example, we
merely require the existence of the CAD components and
represent them as UML components (note the UML stereo-
type component). Engineers may then add links between
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the CAD components (aka UML components) and use cases
through UML trace associations – an existing linking mech-
anism that is now (mis)used to represent CAD to use case
links. These links essentially implement the relations de-
fined in Figure*2. For example, we previously learned that
the Gripper component is necessary to perform the use
cases “Release Object”, “Grab Object”, and “Move Object”.
In Figure 6 (a) we thus find three corresponding UML trace
links. The consistency rule then ensures that such links do
in fact exist.

A drawback of this strategy is that only those engi-
neers benefit from consistency feedback who are using the
unifying tools. Moreover, the unifying tool must be in-use
continuously for consistency checking to function. Hence,
this strategy is mostly only useful if a single engineer
uses multiple tools and likes to maintain the consistency
among them. Moreover, one also needs to pay attention to
the writing of consistency rules since they reflect on UML
elements as placeholders for other tools’ artifacts.

4.2 Engineering Cloud

For multi-user consistency checking, a better strategy is the
use of an engineering cloud such as the DesignSpace [9].
The cloud provides a common representation for all tools –
typically on a server. The various tools sync their artifacts to
this common representation using transformations that are
similar to the ones discussed above (and described later).
The consistency is validated in the cloud since all artifacts
are represented there. Figure 6 (b) depicts the DesignSpace
Engineering Cloud [9]. The left side shows artifacts that
were synced to the cloud (e.g., the “Use Cases” and “CAD
Components”). Engineers can further augment these arti-
facts. In this case, a ”Link” type was added to allow links
between CAD Components and Use Cases. One such link
is visualized at the bottom left. This kind of links are thus
another implementation of the relations defined in Figure*2.

Inter and Intra-Consistency checking is done in the
cloud. For example, we are now able to handle the afore-
mentioned consistency rule that ensures that any given CAD
component must be used by at least one use case. This
consistency rule is depicted in the top right of Figure 6 (b).
It starts its validation at the CAD component (the context
element) and through the ”links” field (the one we added to
the cloud) it navigates to the target elements, of which one
is expected to be of type “Use Case”.

It is more elaborate to realize this strategy than com-
pared to the unifying tool because it requires a dedicated
cloud/server. Moreover, all tool artifacts required for con-
sistency checking need to be represented there - complete
with meta model definitions and transformations. Yet, it
provides comprehensive, multi-tool consistency checking
with consistency rules that are quite straightforward to
define.

5 APPLICATION

5.1 Transformation of Artifacts

The unifying tool and the engineering cloud shared a
common goal: the uniform representation of all artifacts
needed for consistency checking. With such an uniform

representation, the Model/Analyzer functions much like it
would for a standalone tool (e.g., like with the IBM RSA
modeling tool in Figure 3). However, a key problem is how
to transform artifacts to this uniform representation. For
this purpose, we build tool adapters that are plugged into
their respective engineering tools. It is important to note that
the actual adapter implementation is tool specific and may
vary significantly from tool to tool. Nonetheless, there are
common principles [10]. The effort of building such adapters
depends on the openness of tools. Fortunately, most engi-
neering tools do provide programmatic APIs for accessing
its artifacts and in the past we typically had to invest a few
person months of programming effort for each such adapter.
Once implemented, the adapters functioned automatically
by propagating artifacts and their changes to the unifying
tool or engineering cloud. Examples of adapters we have
built are Eclipse/Eclipse Modeling Framework (Java and
Domain Specific Languages), EPlan (Electrical Drawings),
IBM Rational Software Architect (UML), LibrePlan (Require-
ments and Projekt Management), Microsoft Excel (Calcula-
tions), or PTC Pro/Engineer (CAD Drawings).

The key question was knowing which artifacts the
adapters had to propagate. Not every detail was relevant
for consistency checking and we generally found it useful to
simplify artifact representation with transformation. For ex-
ample, Figure 6 merely depicted the existence of CAD com-
ponents but not their many graphical properties because
these properties were not relevant for consistency checking.
Such simplifications greatly limited the complexity and cost
of building tool adapters.

We generally relied on domain experts to define the
consistency rules and to decide what artifacts were needed
for evaluating them. These domain experts also helped
us understand how to visualize inconsistencies once de-
tected. for the most part, we enumerated inconsistencies
and highlighted the artifacts involved (i.e., the scope). This
was sufficient if engineers understood well the meaning of
the consistency rules. Future work will investigate other
visualizations.

5.2 Linking of Artifacts

Consistency checking investigates relationships among ar-
tifacts. For this purpose, it is necessary to navigate among
artifacts as was discussed above. This is challenging when
artifacts reside in different tools. Tool vendors generally do
not integrate their tools. Even the publishing of artifacts into
shared repositories (e.g., GIT, SVN, Engineering Clouds)
does not remedy this problem because there these artifacts
merely co-exist but remain unlinked. For example, we en-
countered this problem when we needed to describe the
relationships among the robot’s use cases and CAD compo-
nents. Neither the CAD tool nor the Use Case modeling tool
provided means of capturing such relationships. Only when
we provided an uniform representation were we able to add
links among them. If two tools use semantically similar arti-
facts with a consistent naming scheme then such links might
be implicit and could be derived automatically. However,
the CAD/Use Case example also showed the more common
situation where this is not possible. There is little naming
similarity among the artifacts in Figure 1. To remedy this,
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Fig. 6: Two Inter-Tool Consistency Checking Examples: a) Unifying UML Modeling Tool Example which represents CAD
Components as UML Components with CAD-UseCase Links as UML trace associations or b) DesignSpace Engineering
Cloud Example which represents relevant Artifacts from both CAD Tool and UML Modeling Tool with CAD-UseCase
Links as explicit Link Types.

we provided special purpose user interfaces to let engineers
define links among artifacts manually. Examples of such
interfaces were shown in Figure 6.

5.3 Scalability and Case Studies

The Model/Analyzer provides consistency checking at a
much reduced computational cost because the approach fo-
cuses on the changes made by engineers. We found that the
approach is very scalable—in previous studies we applied
it to models with more than 100,000 artifacts and observed
average evaluation times around 1ms per change [7].

In terms of applications, we implemented incremental
consistency checking for standalone tools, unifying tools,
and engineering clouds. Moreover, we have conducted case
studies that cover both inter- and intra- tool consistency
checking scenarios on a variety of artifacts [6], [9], [11],
[12]. Specifically, the approach was applied to consistency
checking within UML, model-to-code, electrical-drawing-to-
code, metamodel-to-model, and others.

The approach has even been augmented with repair
suggestions [13] as it might be complicated to precisely
determine the cause of an inconsistency – especially if
artifacts from multiple tools are involved. Combined with
repairs, the approach even supports basic change impact
analysis because inconsistencies caused by a change reflect
the failure to have propagated that change to other artifacts,
tools, or engineering domains [6].

While the Model/Analyzer uses OCL for writing con-
sistency rule, few restrictions exist on the language and
complexity of such rules. Existing work has demonstrated
that incremental consistency rules can scale to rather com-
plex situations and such rules can be structural (e.g., the

existence of a link between the use case and the actor) or
behavioral (e.g., to ensure that artifact changes happen in a
certain order [14]).

6 CONCLUSION

The Model/Analyzer approach to incremental consistency
checking provides up to date assessment on the con-
sistency, correctness, and even completeness of an engi-
neering project. The time frame of the feedback is freely
definable—from instantaneous inconsistency feedback with
every single change to periodic, user-definable intervals
(when saved, when committed to a repository, once a day,
etc.). Its passive feedback ensures that inconsistency feed-
back is available on demand but it does not interrupt the
engineers’ workflow. The approach detects inconsistencies
both within and across tools. Its scalability and applicablity
were evaluated through a wide range of case studies.
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